- Good thermal insulator - Good electrical conductor - Good semiconductor
This is because the hot & cold sides are sandwiched closely together as a PN junction, so once you move heat from one side to the other, it just leaks right back. Mechanical cooling doesn't have this problem, because the hot & cold sides are separated by thin bits of tubing. This makes the thermal leakage a "minor annoyance" in a mechanical system as opposed to "literally the whole problem we're trying to solve" as it is with thermoelectrics.
One work-around is to stack lots & lots of thermoelectric coolers on top of each other. That reduces the temperature difference at each individual PN junction, which in turn lowers the leakage. That's what this team is doing, but using layers that are only a few nanometers thick, so they can fit dozens or hundreds of junctions in a single package.
1. Decompressing the gas can be used to do work, like turning a turbine or something. It's not particularly efficient, as you mention, but it can store some energy for a while. Also the tech to do this is practically off-the-shelf right now, and doesn't rely on a ton of R&D to ramp up. Well, maybe the large storage tanks do, but that should be all. So it _does_ function and nobody else is doing it this way so perhaps all that's seen as a competitive edge of sorts.
2. The storage tech has viable side-products, so the bottom-line could be diversified as to not be completely reliant on electricity generation. The compressed gas itself can be sold. Processed a little further, it can be sold as dry ice. Or maybe the facility can be dual-purposed for refrigeration of goods.
3. IMO, they're using CO2 as a working fluid is an attempt to sound carbon-sequestration-adjacent. Basically, doubling-down on environmentally-sound keywords to attract investment. Yes, I'm saying they're greenwashing what should otherwise be a sand battery or something else that moves _heat_ around more efficiently.
Heat-based energy storage is always going to be inefficient, since it's limited by the Carnot efficiency of turning heat back into electricity. It's always better to store energy mechanically (pumping water, lifting weights, compressing gas), since these are already low-entropy forms of energy, and aren't limited by Carnot's theorem.
I don't know much about this CO2 battery, but I'm guessing the liquid-gas transition occurs under favorable conditions (reasonable temperatures and pressures). The goal is to minimize the amount of heat involved in the process, since all heat is loss (even if they can re-capture it to some extent).