This leads to unnecessary helper functions instead of using existing helper functions and so on.
Not sure if it is an issue with the models or with the system prompts and so on or both.
A few examples, prompted at UTC 21:30-23:00 via T3 Chat [0]:
Prompt 1 — 120.65 token/sec — https://t3.chat/share/tgqp1dr0la
Prompt 2 — 118.58 token/sec — https://t3.chat/share/86d93w093a
Prompt 3 — 203.20 token/sec — https://t3.chat/share/h39nct9fp5
Prompt 4 — 91.43 token/sec — https://t3.chat/share/mqu1edzffq
Prompt 5 — 167.66 token/sec — https://t3.chat/share/gingktrf2m
Prompt 6 — 161.51 token/sec — https://t3.chat/share/qg6uxkdgy0
Prompt 7 — 168.11 token/sec — https://t3.chat/share/qiutu67ebc
Prompt 8 — 203.68 token/sec — https://t3.chat/share/zziplhpw0d
Prompt 9 — 102.86 token/sec — https://t3.chat/share/s3hldh5nxs
Prompt 10 — 174.66 token/sec — https://t3.chat/share/dyyfyc458m
Prompt 11 — 199.07 token/sec — https://t3.chat/share/7t29sx87cd
Prompt 12 — 82.13 token/sec — https://t3.chat/share/5ati3nvvdx
Prompt 13 — 94.96 token/sec — https://t3.chat/share/q3ig7k117z
Prompt 14 — 190.02 token/sec — https://t3.chat/share/hp5kjeujy7
Prompt 15 — 190.16 token/sec — https://t3.chat/share/77vs6yxcfa
Prompt 16 — 92.45 token/sec — https://t3.chat/share/i0qrsvp29i
Prompt 17 — 190.26 token/sec — https://t3.chat/share/berx0aq3qo
Prompt 18 — 187.31 token/sec — https://t3.chat/share/0wyuk0zzfc
Prompt 19 — 204.31 token/sec — https://t3.chat/share/6vuawveaqu
Prompt 20 — 135.55 token/sec — https://t3.chat/share/b0a11i4gfq
Prompt 21 — 208.97 token/sec — https://t3.chat/share/al54aha9zk
Prompt 22 — 188.07 token/sec — https://t3.chat/share/wu3k8q67qc
Prompt 23 — 198.17 token/sec — https://t3.chat/share/0bt1qrynve
Prompt 24 — 196.25 token/sec — https://t3.chat/share/nhnmp0hlc5
Prompt 25 — 185.09 token/sec — https://t3.chat/share/ifh6j4d8t5
I ran each prompt three times and got (within expected variance meaning less than 5% plus or minus) the same token/sec results for the respective prompt. Each used Claude Haiku 4.5 with "High reasoning". Will continue testing, but this is beyond odd. I will add that my very early evals leaned heavily into pure code output, where 200 token/sec is consistently possible at the moment, but it is certainly not the average as claimed before, there I was mistaken. That being said, even across a wider range of challenges, we are above 160 token/sec and if you solely focus on coding, whether Rust or React, Haiku 4.5 is very swift.
[0] Normally not using T3 Chat for evals, just easier to share prompts this way, though was disappointed to find that the model information (token/sec, TTF, etc.) can't be enabled without an account. Also, these aren't the prompts I usually use for evals. Those I try to keep somewhat out of training by only using paid for API for benchmarks. As anything on Hacker News is most assuredly part of model training, I decided to write some quick and dirty prompts to highlight what I have been seeing.
Anthropic mentioned this model is more then twice as fast as claude sonnet 4 [2], which OpenRouter averaged at 61.72 tps for sonnet 4 [3]. If these numbers hold we're really looking at an almost 3x improvement in throughput and less then half the initial latency.
[1] https://openrouter.ai/anthropic/claude-haiku-4.5 [2] https://www.anthropic.com/news/claude-haiku-4-5 [3] https://openrouter.ai/anthropic/claude-sonnet-4
Yes, we got Groq and Cerebras getting up to 1000token/sec, but not with models that seem comparable (again, early, not a proper judgement). Anthropic has been historically the most consistent in outperforming personal benchmarks vs public benchmarks, for what that is worth so I am optimistic.
If speed, performance and pricing are something Anthropic can keep consistent long term (i.e. no regressions), Haiku 4.5 really is a great option for most coding tasks, with Sonnet something I'd tag in only for very specific scenarios. Past Claude models have had a deficiency in longer term chains of tasks. Beyond 7 minutes roughly, performance does appear to worsen with Sonnet 4.5, as an example. That could be an Achilles heel for Haiku 4.5 as well, if not this really is a solid step in terms of efficiency, but I have not done any longer task testing yet.
That being said, Anthropic once again has a rather severe issue it seems, casting a shadow upon this release. From what I am seeing and others are reporting, Claude Code currently does count Haiku 4.5 usage the same as Sonnet 4.5 usage, despite the latter being significantly more expensive. They also did not yet update the Claude Code support pages to reflect the new models usage limits [0]. I really think such information should be public by launch day and hope they can improve their tooling and overall testing, it really continues to throw a shadow over their impressive models.
[0] https://support.claude.com/en/articles/11145838-using-claude...
One workaround we're doing now that seems to work is use claude for all tasks but delegate specific tools with cerebras/qwen-3-coder-480b model to generate files or other token heavy tasks to avoid spiking the total number of requests. This has cost and latency consequences (and adds complexity to the code), but until those throttle limits are lifted seems to be a good combo. I also find that claude has better quality with tool selection when the number of tools required is > 15 which our current setup has.
Frontend is building an AI-powered Shopify development platform. We use AI to generate full-stack application built using Next.js / Tailwind for Shopify-connected storefronts.
Experience: 7-10+ years as a full-stack experience with recent experience using TypeScript, Next.js, Tailwindcss, Postgres, and Ruby on Rails. E-commerce development using Shopify GraphQL APIs is a plus. Our tech stack is:
- Next.js - Supabase / Postgres - TypeScript - Tailwind - Ruby on Rails - Shopify Storefront + Admin GraphQL APIs
Send us a note at: info[plus]hn@frontend.co