The release in Tahoe 26.2 will enable us to do fast tensor parallelism in MLX. Each layer of the model is sharded across all machines. With this type of parallelism you can get close to N-times faster for N machines. The main challenge is latency since you have to do much more frequent communication.
Earlier this year I experimented with building a cluster to do tensor parallelism across large cache CPUs (AMD EPYC 7773X have 768mb of L3). My thought was to keep an entire model in SRAM and take advantage of the crazy memory bandwidth between CPU cores and their cache, and use Infiniband between nodes for the scatter/gather operations.
Turns out the sum of intra-core latency and PCIe latency absolutely dominate. The Infiniband fabric is damn fast once you get data to it, but getting it there quickly is a struggle. CXL would help but I didn't have the budget for newer hardware. Perhaps modern Apple hardware is better for this than x86 stuff.
While they do have lots of money and many people, they don't have infinite money and specifically only have so much hot infrastructure to spread around. You'd expect they have to gradually build up the case that a large scale experiment is likely enough to yield a big enough advantage over what's already claiming those resources.
There are so many trade and manufacturing links between China and Taiwan that an outright war would be economically disastrous for both countries.
Minor annoyance, maybe, rage quit the application? Not a chance.
It's only when several frames in a row are dropped that people start to notice, and even then they rarely care as long as the message within the video has enough data points for them to make an (educated) guess.