It's also kind of interesting how causality allegedly has a speed limit and it's rather slow all things considered.
Anyway, in 150 years we absolutely came a long way, we'll figure it that out eventually, but as always, figuring it out might lead even bigger questions and mysteries...
I feel like the problem is that we just assume that e^(pi*i) = -1 as a given, which makes i "feel" like number, which gives some validity to other interpretations. But I would argue that that equation is not actually valid. It arises from Taylor series equivalence between e, sin and cos, but taylor series is simply an approximation of a function by matching its derivatives around a certain point, namely x=0. And just because you take 2 functions and see that their approximations around a certain point are equal, doesn't mean that the functions are equal. Even more so, that definition completely bypasses what it means to taking derivatives into the imaginary plane.
If you try to prove this any other way besides Taylor series expansion, you really cant, because the concept of taking something to the power of "imaginary value" doesn't really have any ties into other definitions.
As such, there is nothing really special about e itself either. The only reason its in there is because of a pattern artifact in math - e^x derivative is itself, while cos and sin follow cyclic patterns. If you were to replace e with any other number, note that anything you ever want to do with complex numbers would work out identically - you don't really use the value of e anywhere, all you really care about is r and theta.
So if you drop the assumption that i is a number and just treat i as an attribute of a number like a negative sign, complex numbers are basically just 2d numbers written in a special way. And of course, the rotations are easily extended into 3d space through quaternions, which use i j an k much in the same way.
Your whole point about Taylor series is also wrong, as Taylor series are not approximations, they are actually equal to the original function if you take their infinite limit for the relevant functions here (e^x, sin x, cos x). So there is no approximation to be talked about, and no problem in identifying these functions with their Taylor series expansions.
I'd also note that there is no need to use Taylor series to prove Euler's formula. Other series that converge to e^x,cos x, sin x can also get you there.