The big thing is memory allocation, sometimes, on tiny systems, you can't malloc() at all, you also have to be careful about your stack, which is often no more than a few kB. Rust, like modern C++ tend to abstract away these things, which is perfectly fine on Linux and a good thing when you have a lot of dynamic structures, but one a tiny system, you usually want full control. Rust can do that, I think, like C++, it is just not what it does best. C works well because it does nothing unless you explicitly ask for it, and Zig took that philosophy and ran away with it, making memory allocation even more explicit.
This TLS handshake can only happen after the TCP handshake, right? So 1 rtt for TCP, + 1 rtt for TLS. 2 rtt total. (2.5 rtt for the server to start receiving actual data. 3 rtt for the client to receive the actual response.)
QUIC really wants to do discovery to figure out a better way to move the data and of course Tor doesn't want discovery that's the whole point, so these features are in tension, but that's not hard to resolve in Tor's favour from what I can see.