Deleted Comment
Whether a number is prime has nothing to do with the base we use to write it. Changing the base wouldn't affect the visualisation at all. A number is either prime or not regardless of base. Since this grid only marks prime positions with circles, the pattern would look exactly the same. In fact, you can already imagine the numbers in any base you like while looking at the visualisation.
Would we see new patterns emerge if the number of columns increases per row by X (X being constant or perhaps prime numbers ;-) )?
Try these shapes: 100x113, then 100x114, then 100x115, the "patterns" swing from slant down, to vertical, to slant up.
I'd love this (even more) with some animation and colo(u)r options.
cols.value = 1n; setInterval(() => {cols.value++; readInput()}, 250);
For all primes p greater than 3, p ≡ ±1 (mod 6).
Therefore, when the total number of columns is a multiple of 6, all primes except 2 fall into the same columns, namely 1, 5, 7, 11, 13, 17 and so on.
In fact, according to the celebrated prime number theorem, the number of primes less than or equal to n is asymptotic to n/log n, which means the density of primes near n is asymptotic to 1/log n.
I have a small section about this at https://susam.net/journey-to-prime-number-theorem.html#prime... if you want to read more about this.
See also: https://en.wikipedia.org/wiki/Prime_number_theorem
My tool uses the Miller-Rabin primality test with prime bases drawn from https://oeis.org/A014233 to determine whether a number is prime. This allows it to handle numbers up to 3317044064679887385961980.
For example, https://susam.net/primegrid.html#3317044064679887385961781-2... shows the upper limit of the numbers this tool can check. The three circles displayed there represent the following prime numbers:
3317044064679887385961783
3317044064679887385961801
3317044064679887385961813
I hope this is fun for you too!