> The model is natively multilingual, achieving strong transcription performance in 13 languages, including English, Chinese, Hindi, Spanish, Arabic, French, Portuguese, Russian, German, Japanese, Korean, Italian, and Dutch. With a 4B parameter footprint, it runs efficiently on edge devices, ensuring privacy and security for sensitive deployments.
I wonder how much having languages with the same roots (e.g. the romance languages in the list above or multiple Slavic languages) affects the parameter count and the training set. Do you need more training data to differentiate between multiple similar languages? How would swapping, for example, Hindi (fairly distinct from the other 12 supported languages) for Ukrainian and Polish (both share some roots with Russian) affect the parameter count?
You might as well just write instructions in English in any old format, as long as it's comprehensible. Exactly as you'd do for human readers! Nothing has really changed about what constitutes good documentation. (Edit to add: my parochialism is showing there, it doesn't have to be English)
Is any of this standardization really needed? Who does it benefit, except the people who enjoy writing specs and establishing standards like this? If it really is a productivity win, it ought to be possible to run a comparison study and prove it. Even then, it might not be worthwhile in the longer run.