Google significantly reduced the free quota and removed pro models from gemini cli some 2-3 moths ago.
Also, Gemini models eat tokens like crazy. Something Codex and Code would do with 2K tokens takes Gemini 100K. Not sure why.
It does eventually finish its quota, but then I just switch to a different Google account (which, amusingly, is what Gemini told me to do).
Happy to consume Google’s free tokens! The free model is a distant third for coding, but it’s fine for leaf node work in a larger project.
Because it's the color of the atmosphere, specifically nitrogen and oxygen! It's technically correct to state this.
Gasp! But aren't nitrogen and oxygen usually described as "colorless"? Well, yes but... If they were perfectly colorless, the sky would be black. It's technically more correct to describe them as nearly colorless and very slightly blue. Very slightly because you need to see through kilometers of atmosphere to perceive the blue. It doesn't matter if the color is caused by absorption, or reflection, or (Rayleigh) scattering of certain wavelengths. The "color" of an object is simply the color you perceive with your eyes. If you perceive blue, it's technically correct to say its color is blue.
It's like saying plants are green because green is the color of chlorophyll. And in the case of chlorophyll, the color is caused by absorption not by scattering. But the physics is irrelevant. Green is its color.
Q: But sunsets/sunrises are red & orange not blue! A: the simplest answer is: color of an object can change under different light conditions. Specifically in this example, when seeing the sun through not kilometers but hundred of kilometers of atmosphere, all the blue-ish wavelengths have been scattered in random directions so only the red-ish wavelengths remain, thus the atmosphere is illuminated by progressively redder and redder light as the photons travel longer and longer distances through the atmosphere.