You know back when I built my computers, not once did I ever use any kind of static electricity discharge “system”. No wrist strap, no mat, no anything. And I don’t know anybody who did.
Has anybody ever actually destroyed a chip with static electricity?
(Of course it could be the climate I lived in as well)
Modern IC ESD protection is very effective against a few moderate energy events distributed on different pins, and there's a few industry standards that help determine the required amount of caution for dealing with a particular IC (HBM or human-body model, and CDM or charged-device model, are common - targeted toward human assembly procedures and things like triboelectric or inductive charge buildup). In the right climate, a single high energy event is sometimes enough to degrade functionality or (rarely) completely destroy the device, so board assembly and semiconductor manufacturing facilities still require workers to use wrist straps, shoe grounders, mats, treated floors, climate control, etc. Some high voltage GaN work I did years ago required ionizing blowers (basically a spark gap with a fan) because GaN gates are easy to destroy with gate overstress, and there are risks involved with unintended high voltage contact with typical ESD protective solutions. In another embedded-focused lab, the only time I've ever seen someone put on a wrist strap was for handling customer hardware returns. It really depends what you're working with, and in what environment.
I've more frequently (once or twice a year) had devices which exhibit symptoms of something being wrong at the inputs or the outputs, but only on a specific pin or port. For outputs, some symptoms include the output slew rate is inadequate, or the output appears stuck sometimes, or the output has higher than expected voltage noise (though this is a non-exhaustive list). For inputs, the symptoms are more complex - sometimes there's a manifestation at the outputs for amplifiers or other linear circuits, but for feedback systems or digital systems they might behave as though an input is stuck, toggling slowly, etc. which is difficult to distinguish from other, more common errors. I've also directly been the cause of several ESD failures, but in these cases the test objective was to determine the failure thresholds for the system, so I'm not sure that counts.
I've had a customer hardware failure that was eventually traced back to electrical overstress damage on a single pin of an IC near the corner of a board, right where someone might put their thumb if they were holding the board in one hand. In the absence of a better explanation, I suggested this was an ESD failure due to handling error. I never heard about it again, which is weak evidence in favor of a one-off ESD event.
I'm sure there are users with specialized needs who need something more complex, but i dont think microsoft office is quite the moat it used to be.