What gets me is that this isn't even a software moat anymore - it's literally just whoever can get their hands on enough GPUs and power infrastructure. TSMC and the power companies are the real kingmakers here. You can have all the talent in the world but if you can't get 100k H100s and a dedicated power plant, you're out.
Wonder how much of this $13B is just prepaying for compute vs actual opex. If it's mostly compute, we're watching something weird happen - like the privatization of Manhattan Project-scale infrastructure. Except instead of enriching uranium we're computing gradient descents lol
The wildest part is we might look back at this as cheap. GPT-4 training was what, $100M? GPT-5/Opus-4 class probably $1B+? At this rate GPT-7 will need its own sovereign wealth fund
From Dario’s interview on Cheeky Pint: https://podcasts.apple.com/gb/podcast/cheeky-pint/id18210553...
As mentioned in the article, the big trick is having clear specs. In my case I sat down for 2 hours and wrote a 12 step document on how I would implement this (along with background information). Claude went through step by step and wrote the code. I imagine this saved me probably 6-10 hours. I’m now reviewing and am going to test etc. and start adjusting and adding future functionality.
Its success was rooted in the fact I knew exactly how to do what it needed to do. I wrote out all the steps and it just followed my lead.
It makes it clear to me that mid and senior developers aren’t going anywhere.
That said, it was amazing to just see it go through the requirements and implement modules full of organised documented code that I didn’t have to write.
I found I was liking/bookmarking insightful content on X I rarely saw again and wanted a way to resurface them somewhere I would see multiple times per day.
Can import from X via share sheet or manually enter them. It's minimal, but I've found having:
"i hate how well asking myself "if i had 10x the agency i have what would i do" works"
there every time I unlock my phone, was worth the development effort.
Years later, I get an email from a stranger in Korea, asking me how to run my program. Why would he want to use my silly program? Turns out you can adapt the code to read analog pressure gauges which is really useful for chemical plants. Goes to show that there's often a use for most things.
This is why he is spoken of with such reverence and why his insights have profoundly impacted both scientists and non-scientists alike. Few Nobel laureates have achieved such popular influence.
Looking at the numbers on the graphs for single-slit diffraction, they are just binomial coefficient, at least mostly, not sure why there are pieces missing in the last rows. That is also what you expect when you repeatedly make binary decisions to go left or right. The article does not mention the binomial distributions once, it only appears in a comment.
And then they claim that it converge to the actual single-slit diffraction distribution, something with a Chebyshev polynomial and the sinc function, according to the article. Seemingly without justification besides looking at graphs and noting that they are both bell shaped. As said, not sure what is going on in the last rows of the graphs, but I would almost bet that the two functions are not the same, even in the limit as it becomes a Poisson distribution plus whatever the last rows do.
Why do they not just proof that the two are the same? The entire article seems to be about getting numbers out of their multiway system and then concluding that - if you squint hard enough - they look somewhat like diffraction patterns.
It really feels to me as if the distinctions between countable vs uncountable; rational vs irrational; discrete vs continuous; all represent the boundary between physics and mathematics – an idea I wish I could elaborate more precisely, but for me stands only on a shred of intuition.
I've been interested lately in Stephen Wolfram's and Scott Aaronson's writings on related ideas.
Aaronson on Gödel, Turing, and Friends: https://www.scottaaronson.com/democritus/lec3.html
Wolfram on computational irreducibility and equivalence: https://www.wolframscience.com/nks/chap-12--the-principle-of...
“These include providing a theory of information underlying classical and quantum information; generalising the theory of computation to include all physical transformations; unifying formal statements of conservation laws with the stronger operational ones (such as the ruling-out of perpetual motion machines); expressing the principles of testability and of the computability of nature (currently deemed methodological and metaphysical respectively) as laws of physics; allowing exact statements of emergent laws (such as the second law of thermodynamics); and expressing certain apparently anthropocentric attributes such as knowledge in physical terms.”