And if one needs the transactional/consistency semantics, hybrid/filtered-search, low latencies, etc - consider a SOTA Postgres system like AlloyDB with AlloyDB ScaNN which has better scaling/performance (1B+ vectors), enhanced query optimization (adaptive pre-/post-/in-filtering), and improved index operations.
Full disclosure: I founded ScaNN in GCP databases and currently lead AlloyDB Semantic Search. And all these opinions are my own.
> Filtering looks to be applied after coarse retrieval. That keeps the index unified and simple, but it struggles with complex conditions. In our tests, when we deleted 50% of data, TopK queries requesting 20 results returned only 15—classic signs of a post-filter pipeline.
Things like this are why I'd much prefer if Amazon provided detailed documentation of how their stuff works, rather than leaving it to the development community to poke around and derive those details independently.
Full disclosure: I founded ScaNN in GCP databases and am the lead for AlloyDB Semantic Search. And all these opinions are my own.
So since it was previously weakly consistent due to performance reasons, how does strong consistency affect transactional inserts/updates latency?
One clarification question - the blog post lists "lack of ACID transactions and MVCC can lead to data inconsistencies and loss, while its lack of relational properties and real-time consistency makes many database queries challenging" as the bad for ElasticSearch. What is pg_bm25's consistency model? It had been mentioned previously as offering "weak consistency" [0], which I interpret to have the same problems with transactions, MVCC, etc?