Readit News logoReadit News
shagie · 3 months ago
One of my early "this is neat" programs was a genetic algorithm in Pascal. You entered a bunch of digits and it "evolved" the same sequence of digits. It started out with 10 random numbers. Their fitness (lower was better) was the sum the difference. So if the target was "123456" and the test number was "214365", it had a fitness of 6. It took the top 5, and then mutated a random digit by a random +/- 1. It printed out each row with the full population. and so you could see it scrolling as it converged on the target number.

Looking back, I want to say it was probably the July, 1992 issue of Scientific American that inspired me to write that ( https://www.geos.ed.ac.uk/~mscgis/12-13/s1100074/Holland.pdf ) . And as that was '92, this might have been on a Mac rather than an Apple ][+... it was certainly in Pascal (my first class in C was in August '92) and I had access to both at the time (I don't think it was turbo pascal on a PC as this was a summer thing and I didn't have a IBM PC at home at the time). Alas, I remember more about the specifics of the program than I do about what desk I was sitting at.

Steeeve · 3 months ago
I wrote a whole project in pascal around that time. Analyzing two datasets. It was running out of memory the night before it was due, so I decided to have it run twice, once for each dataset.

That's when I learned a very important principal. "When something needs doing quickly, don't force artificial constraints on yourself"

I could have spent three days figuring out how to deal with the memory constraints. But instead I just cut the data in half and gave it two runs. The quick solution was the one that was needed. Kind of an important memory for me that I have thought about quite a bit in the last 30+ years.

aperrien · 3 months ago
An Aeon ago in 1984, I wrote a perceptron on the Apple II. It was amazingly slow (20 minutes to complete a recognition pass), but what most impressed me at the time was that it did work. Since that time as a kid I always wondered just how far linear optimization techniques could take us. If I could just tell myself then what I know now...
aardvark179 · 3 months ago
I thought this was going to be about the programming language, and I was wondering how they managed to implement it on a machine that small.
foobarian · 3 months ago
That's funny, pretty sure we used Standard ML on the old oscilloscope Macs in undergrad. Not Apple 2 of course, but still already pretty dated even at that time (late 90s).
noelwelsh · 3 months ago
That's also what I was thinking. ML predates the Apple II by 4 years, so I think there is definitely a chance of getting it running! If targetting the Apple IIGS I think it would be very achievable; you could fit megabytes of RAM in those.
dekhn · 3 months ago
Likely any early implementation of ML would have been on a mainframe or minicomputer, not a 6502. A mainframe/minicomputer would have had oodles of storage (both durable and RAM), as well as a compiler for a high level language (which fits what I can see in https://smlfamily.github.io/history/ML2015-talk.pdf and other locations).
Scramblejams · 3 months ago
Same. What flavor of ML would be the most appropriate for that challenge, do you think?
taolson · 3 months ago
While not exactly ML, David Turner's Miranda system is pretty small, and might be feasible:

https://codeberg.org/DATurner/miranda

windsignaling · 3 months ago
I'm surprised no one else has commented that a few of the conceptual comments in this article are a bit odd or just wrong.

> The final accuracy is 90% because 1 of the 10 observations is on the incorrect side of the decision boundary.

Who is using K-means for classification? If you have labels, then a supervised algorithm seems like a more appropriate choice.

> K-means clustering is a recursive algorithm

It is?

> If we know that the distributions are Gaussian, which is very frequently the case in machine learning

It is?

> we can employ a more powerful algorithm: Expectation Maximization (EM)

K-means is already an instance of the EM algorithm.

mcramer · 2 months ago
> Who is using K-means for classification? If you have labels, then a supervised algorithm seems like a more appropriate choice. The generated data is labeled but we can imagine those labels don't exist when running k-means. There are many applications for unsupervised clustering. I don't, however, think that there are many applications for running much of anything on an Apple ][+.

> K-means clustering is a recursive algorithm My bad. It's iterative. I'll fix that. Thanks.

> If we know that the distributions are Gaussian, which is very frequently the case in machine learning Gaussian distributions are very frequent and important in machine learning because of the Central Limit Theorem but, beyond that, you are correct. While many natural phenomena are approximately normal, the reason for the Gaussian's frequent use is often mathematical mathematical convenience. I'll correct my post.

> we can employ a more powerful algorithm: Expectation Maximization (EM) Excellent point. I will fix that, too. "While k-means is simple, it does not take advantage of our knowledge of the Gaussian nature of the data. If we know that the distributions are at least approximately Gaussian, which is frequently the case, we can employ a more powerful application of the Expectation Maximization (EM) framework (k-means is a specific implementation of centroid-based clustering that uses an iterative approach similar to EM with 'hard' clustering) that takes advantage of this." Thank you for pointing out all of this!

JSR_FDED · 3 months ago
Applesoft BASIC is just so darn readable. Youngsters have nothing comparable these days to learn the basics of expressing an algorithm without having to know a lot more.

And if it ever became too slow, you could reimplement the slow part in 6502 assembler, which has its own elegance. Great way to learn, glad I came up that way.

drob518 · 3 months ago
Upvoted purely for nostalgia.
amilios · 3 months ago
Bit of a weird choice to draw a decision boundary for a clustering algorithm...
mcramer · 2 months ago
How so? Drawing decision boundary is a pretty common visualization technique for understanding how an algorithm partitions a data space.
alexshendi · 3 months ago
This motivates me to try this on my Ministrel 4th (21th century Jupiter Ace clone).