We see a lot of wide social, log, and cyber data where this works, anywhere from 5-200 dim. Our bio users are trickier, as we can have 1K+ dimensions pretty fast. We find success there too, and mostly get into preconditioning tricks for those.
At the same time, I'm increasingly thinking of learning neural embeddings in general for these instead of traditional clustering algorithms. As scales go up, the performance argument here goes up too.
I have a couple of questions for now: (1) I am confused by your last sentence. It seems you're saying embeddings are a substitute for clustering. My understanding is that you usually apply a clustering algorithm over embeddings - good embeddings just ensure that the grouping produced by the clustering algo "makes sense".
(2) Have you tried PaCMAP? I found it to produce high quality and quick results when I tried it. Haven't tried it in a while though - and I vaguely remember that it won't install properly on my machine (a Mac) the last time I had reached out for it. Their group has some new stuff coming out too (on the linked page).
My last sentence was on more valuable problems, we are finding it makes sense to go straight to GNNs, LLMs, etc and embed multidimensional data that way vs via UMAP dim reductions. We can still use UMAP as a generic hammer to control further dimensionality reductions, but the 'hard' part would be handled by the model. With neural graph layouts, we can potentially even skip the UMAP for that too.
Re:pacmap, we have been eyeing several new tools here, but so far haven't felt the need internally to go from UMAP to them. We'd need to see significant improvements given the quality engineering in UMAP has set the bar high. In theory I can imagine some tools doing better in the future, but the creators have't done the engineering investment, so internally, we rather stay with UMAP. We make our API pluggable, so you can pass in results from other tools, and we haven't heard much from that path from others.
[1] Section C.1 in the Appendix here https://arxiv.org/pdf/2406.11695